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ABSTRACT

This thesis develops an iterative algorithm for the design of ARMA models of
signals in the time domain. The algorithim s based on optimization techniques.
particularly a gradient techmque known as the restricted step method is used. The
new algorithm 1s called the terative Prony mcthod. and the results obtained using this
new method are compared to those obtained using the iterative prefiltering algorithm.
The thesis shows that the performance of the iterative Prony method is in most of

the cases comparable or superior to that of the iterative prefiltering algorithm.
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I. INTRODUCTION

A. THE IDEA OF ARMA MODELING

The goal of lincar modeling is to accurately represent an observed data sequence
as the output of a linear filter. The idea of representing a complicated process with a
comparatively simpler model has many different applications. ('urve fitting in math-
ematical modeling. analysis of electronic devices using equivalent circuits, and system
transfer functions in automatic control are just a few examples outside the area of dig-
ital signal processing. Parametric modeling has also a large number of applications in
signal processing. Currently there is considerable interest in the parametric modeling
approach to spectral estimation. In speech processing the applications include digital
transmission. storage, and synthesis of the speech signal. Qur particular interest is
the modeling of sonar signals. such as biologics and other underwater acoustic data.
This work forms part of an overall research program in sonar signal modeling. The
research will help to understand the relative benefits of signal domain algorithms
versus algorithms based on coeflicients of the transfer function. It is hoped that the
method developed in this thesis will become an important tool in the overall effort
for sonar signal modeling.

In linear modeling the filter used to generate the data sequence is usually rep-
resented by a linear difference equation with constant coelflicients. The z-transform
of this type of system is a rational polvnomial function. Three type of models are
derived from this kind of systems: they are known as autoregresive (AR). moving
average (MA). and autoregresive moving average (ARMA).

Much work has been done on AR models. which correspond to all-pole svstems.

The reason for that is that the parameters for the model can be obtained by solving




linear equations. and a great bodv of theory has been developed that applies to
this problem [Ref. 1. 2]. Relatively much less work has been done with MA and
ARMA models. However. since MA models have limited applications and are alimost
as difficult to obtain as ARMA models. most interest centers on the latter. The
filter in this tvpe of models has both poles and zeros. and the design fundamentally
involves nonlinear equations. A properly designed ARMA model can provide better
performance than an AR model. with a smaller number of parameters. ARMA

modeling is the topic of this thesis.

B. WHY AN ITERATIVE ALGORITHM IN THE SIG-
NAL DOMAIN

There are many different approaches to the problem of ARMA modeling. The
majority of them are based on statistical techniques [Ref. 3]. Some of these methods
regard the data as a realization of a random process while others focus on the data as
given [Ref. 1]. Data oriented methods try to minimize some criterion that estimates
how well the model fits the data, in most cases the least squares error between the
signal and the model. Stochastic approaches may attempt to estimate the model
parameters directly from the data by solving nonlinear equations or by spectral fac-
torization. The maximum likelihood procedure. for example [Ref. 1. 4], is essentially
nonlinear. A number of indirect methods have been developed that modify the norm
of the error by separating the AR and MA parts of the problem so that at least some
of the equations to estimate the paramecters become linear. This approach is found
in procedures such as the Prony’s method. Shank’s method. and the least squares
modified Yule-Walker method [Ref. 1, 2, 5. 6]. A different type of approach replaces
the nonlinear problem with iteration while trying to solve for the AR and MA pa-
rameters simultaneously. The iterative prefiltering method of Steiglitz and McBride

[Ref. 7. 8] is of this type.




Our method is also of the latter tvpe. However. the advantage is that 1t works
directly with the poles of the rational model. which we know atfect the performance
of the system. The poles are displaced n specific directions so that the new model
minimizes the error between the model output and the original signal. Iterative
prefiltering on the other hand works with the coefficients of the transter function.
so it 1s difficult or impossible to predict its effects on the poles and zeros of the
svstem. The new algorithm is much more dependable with respect to convergence
than the iterative prefiltering algorithm because it moves poles and zeros specifically

to minimize the error between the model and the original signal.

C. THESIS OUTLINE

The remainder of this thesis is organized as follows. Chapter II presents the
modeling methods that are used in this thesis and gives a brief explanation of all
of them. Chapter III introduces the reader to the theory of multidimensional op-
timization by gradient methods and develops the iterative Prony method. which is
the main contribution of this thesis. Chapter IV presents the results of testing the
algorithm on simulated and real acoustic data and compares these results with those
obtained using iterative prefiltering. Chapter V gives conclusions and suggestions for

future research.




II. ARMA MODELING OF SIGNALS

A. MODELING METHODS USED IN THIS THESIS

This thesis deals with deterministic approaches to ARMA modeling. Two types
of modeling methods are considered. Iirst we have non-iterative methods like Pron:’s
method and its alternate signal domain form [Ref. []: second we consider iterative
methods like iterative prefiltering and the new iterative Prony method developed in
this thesis.

The goal of Prony’s method is to represent a given sequence z[n] as the impulse
response of a linear time invariant (LTI) system. In the transform (z) domain this

representation has the form

~—

X(z) =~ lj—g—)— (2.

where X(z) is the z-transform of z[n] and B(z)/A(z) represents the transfer function

S
—
_

of the system. This approximation is explained in more detail in the next section.
What has become known as Prony’s method in the current signal processing literature
differs from Prony’s original work in some respects. Our basic form of Prony’s method
solves for the coefficients of the transfer function in (2.1).

The signal domain form of Prony’s method is closer to Prony’s original work
[Ref. 1, p.560] and seeks to represent the data in terms of a set of damped exponen-
tials as

rnl = erf +ery +---+cprp

where the r, are the roots of the denominator polynomial A(z) and the ¢; are the
complex coefficients required for the expansion. Both forms involve linear equations

and least squares techniques.




x[n] mde cnl = rinl — Fin

_ B(z) S bzE
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Sl —d Xz

Figure 2.1: Block diagram for the direct method for signal modeling.

The iterative prefiltering method used is due to Steiglitz and McBride [Ref. 7. 3]
and attempts to match the data with a model of finite order using an etficient iterative
approach. It differs from Prony’s method in that it solves for both numerator and
denominator polynomial coetlicients simultaneously at each iteration.

Whenever a signal is modeled using a tixed-order rational polynomial model. an
approximation has to be made and some kind of measure has to be used to determine
the “goodness™ of the model. In this thesis the least squares error norm (mbox!,
norm) is used to measure the approximation error. This norm measures the energy
of the error and is the norm most widely used primarily due to its mathematical

tractability [Ref. 2].

B. OVERVIEW OF MODELING METHODS

1. Prony’s Method

The derivations of all the modeling methods presented in this section follow
those in [Ref. 1. pp. 530-564] and [Ref. 2]. As stated above. Prony’s method aims
at representing a signal as the impulse response of an LTI svstem. Figure 2.1 shows
an implementation of this approximation which is known as the direct method. The
system function X(z) in the transform domain is a rational polynomial function
B(z)/A(z) with Q zeros and P poles. The error signal ¢[n] is computed as the

difference between the response of the system #[n] and the given signal r[n]. i.e.

¢[n] = x[n] — &[n]. (:

o
to
~
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The LTI svstem is chosen to minimize the sum of squared errors

Sp = Z[([n][‘. (2.3)
This problem leads to nonlinear equations whose solution (if a unique solution actu-
ally exists) turns out to be a very difficult task [Ref. 1.2]. To avoid these difficulties.
a number of indirect methods have been developed for modeling. Pronyv’s method is

one of these procedures and can be derived as follows. The LTI system satisties the

difference equation

a4+ a@ln — 1]+ +api[n — Pl = boo{n] + byé[n — 1]+ -+ + bgo[n — Q).

{2.1)
[f the requirement that
Pn]=z[n], n=0.1,....N,—1,

is applied to (2.4), where [V, is the length of the data. and the difference equation is

evaluated for n = 0.1,..., N; — 1, the result is the matrix equation

" z[0] 0 0 0 ‘ [ bo ]
z[2] (1] z[0] e 0 F 1] by
Q) 2lQ-1 <Q-2 - Q-P) T b | Y
@ +1] [Q] Q-1 - z[Q-P+1] : 0
: | ap | :
2Ny 1] 2N, =2 o[N,—3] - £Ns—P_1] | 0
This can be written as
Xe=l6)




where

[ 2[0] 0 0 y 1
o) «fo] 0 0
2] el r[0] e 0 o
Xe=1: : L 27
| AQ) Q1] FQ -2 o aQ - Y]
and
@ +1]  2(Q] Q-1 - 2[@—-P+1]
:r[Ns — 1] :r[Ns - 2] :1:[1\'3 =3 - :1‘[1\'.< - P —1]

and a and b are the vectors of coefficients appearing in (2.3). The lower partition
Xisa=0 (2.9)

represents an overdetermined set of linear equations that need not have an exact
solution. This set of equations can be solved by least squares. where a is chosen to

minimize the least squares norm of the equation error S4 = |je4]|* in
X,,a = €4. (210)

This leads to a set of linear equations called the normal equations, which can be
written compactly as [Ref. 1. pp.536-537]

(X3X4)a= [‘g’* } (2.11)

and can be solved for a and S4. Once the vector a is known, it can be substituted
in the upper partition of (2.6)

b= Xga (2.12)

to solve for the vector b. Although it is referred here simply as Prony’s method.

this procedure is also known as the modern Prony method or the extended Prony

method.




0 gz =1+ I + - can} = rinl = ain] — hin|

(\[n]_, B(z) = @ l)k:—k by by ... /)Q.U. 0.0....

Figure 2.2: Block diagram for the indirect modeling problem.

Although Prony’s method is simple to implement. it is important to keep
in mind that it is an indirect method. In particular this procedure (see Fig. 2.2)

minimizes the squared magnitude of the error
ea[n] = x[n] * a[n] = b[n] (2.13)

where the sequences a[n] and b[n] are defined as

def | an; 0<n <P (g0=1) 5
aln] = { otherwise (2.14)
and
def | ¢y 0Sn<Q (ag=1) T
bln] = { 0; otherwise (2.15)

where P and @ are the number of poles and zeros respectively. Equation 2.13 repre-
sents a different least squares error from that in (2.3) where the quantity to minimize
was the squared magnitude of the error e[n] (see Fig. 2.1). The practical significance
of this difference is that frequently there is a loss of accuracy in estimating the poles

and zeros by Prony’s method [Ref. 3].
2. Signal Domain Form of Prony’s Method

An alternative formulation of the method described above can be obtained
if the problem (2.1) is stated in the signal domain by representing r[r] in terms of a

set of complex exponentials:

= el +ery + -+ cprp (2.16)

o




where as stated before. the ri are the roots of the polynonual -A(z). assumed to be
distinct. and the complex coefficients ¢, provide for the linear combination of the /
roots.

This approximation can be initially formulated as in the section above and
(2.9) can be solved i the least squares sense for the coeflicients of 4(z) {ie. the

vector a). The roots rp of A(z) can then be found and (2.16) can be evaluated for

n=0.1...... V, — 1| to produce the set of equations

1 1 el 1. [ 2[0]
. . _ €1 |
r rs rp _ r(1]
2 2 2 2 (2] 217
™ "2 "p i ={ I+ (2.17)
. N.-1 ..‘\'.s—l N1 cp ‘.' "o

_7‘1 ,«2 et ’I) 3 L.ll‘\h_l]-

This set of equations can then be solved in a least squares sense to obtain the vector
of coefficients c.

In the case of multiple roots at the same location. a slight variation of the
same procedure can be used. Suppose. for example. that r; is a double root. In this

case, the approximation is
rln] = ar! +enrl + -+ cprp {2.13)

and the matrix equation to solve for the coefficients becomes

- -

1 0 1 S| —17[0]
. Cl r*
r ry rs - Tp - 1[1]
ri 2} rs - Th o= 22 L (2.19)
O A L A R AT

This situation is rare. however. because computational errors and errors inherent to
the modeling method itself contribute to produce roots that may be very close to

each other. but not exactly at the same location.

9




3. Iterative Prefiltering

The iterative prefiltering method attempts to solve the “direct™ problem
mentioned in subsection | of this chapter and to refine the initial pole-zero cstimate
by solving a succession of hnear problems. Lquation 2.2 (error for the direct problem
can be written in the z-domamn as

) _ .\(:):1(:)—13(:). (2.90)
) A=)

- - . Bz
E(z)=X(z)-N(2) = X(z) - 4(

{

[}

The notion of iteration can be introduced that allows computation of a new set of
poles and zeros based on the last known set of poles. Iterative prefiltering replaces
the error for the direct problem at the (; + 1) iteration with the iterative error

function
X(2)AG+D(2) — pl+( )y

E(i+1)(:) — ,1(i)(~)

(2.21)

If A)[n] is the inverse z-transform of 1/4()(z). then the error can be written in the

signal domain as
e n] = z[n] * A [n] x "+ V(0] — 60+ [n] « A [n]. (2.22)

The coefficients a!*+!)[n] and b!+1)[n] are selected to minimize the corresponding sum

of squared errors
Ne=—1

S+ _ Z ,e(z+1)[n]’

n=P

)

(2.23)

at each iteration: this situation is shown in Fig. 2.3. No general proof of convergence
has been given for this algorithm: however. it is easy to see that if the iteration does
converge, it must produce the same answer as the direct method. Specifically. at
convergence A) = AU*Y and (2.21) becomes the same as (2.20).

If we use an indirect modeling procedure like Prony’s method to compute

the initial vector a and we define r!") ag
O] Y pin] * hWn). (2.21)
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Figure 2.3: Block diagram for the iterative prefiltering method.

then the sequences h®[n] and ¥ {n] for n = 0.1.... .. Vs — 1 can be computed from

the recursive difference equations

].)
/1“)[77] = ¢n} - Z fl(kf)h(’)[n — k] (2.25)
k=1
and
P _
£Y(n] = xn] ~ Z rtg‘f)x“)[n — k. (2.20)
k=1
Thus the error (2.22) can be written as
AREDY) (11’“)1‘(’)[12 -k => byH)h“)[n -7 (2.27)
k=0 =0

. . +1 (i+1 . . . .
In order to find the coeflicients a;\f ) and bjl ' the error is written in matrix form

forn=0.1...... V, — 1 as
a(1+1)
[ X0 HO | [ _pes) ] = el't!), (2.2%)
where .
[ 2 P] P -1 - 20 |
(i) (W) UTI
XM = I [P +1] I [P) '_I 1] (2.29)
L eONg —1] W[Ns =2 -0 dO[Ng—1-p] ]
[ AP ROP — 1] - B[P Q) ]
, ROP +1]  AW[P c AP - Q41
HY = | | | | , 7 , =+l (2.30)
| RO[Ng — 1] AO[Ng =2 - BO[Ng—1-0Q) |

Il




and

(R
| b
(i+11) c+ 1l
1) “ F1) by »
alt — b‘-+ - ] R v 230
ti+1) /H+H
111) )(‘)

Fguation 2.28 is analogous to (2,10}, Thus the deast squares problem defined by

mimmizing the norm of the error mn i 2.23) can be reduced 1o

Sttt
(l b & (&L }1( X HY J‘) _S:‘::: = (:) 12.32)
0
where
St ettty i2.33)

This linear equation can then be solved for the vectors ol filter parameters.

At this point. it is instructive to compare the performance of the three
modeling methods outlined in this chapter by applying each to model a small segment
of a transient sound corresponding to a wrench being struck. This wrench sound was
recorded and sampled in the laboratory at a sampling rate of approximately 10,210
Hz. This signal. denoted by wrenUl. was also used and modeled in [Ref. 9. Figure
2.1 shows a 100 point segment of the signal wrenOl with one of the three models
(Prony’s. signal domain form of Prony’'s, and Iterative Prefiltering ) overlaid. In all
three cases the signal was modeled with four poles and four zeros. s can be seen.
the difference between iterative prefiltering and the first two models is significant.
The non-iterative methods match only the initial points of the sequence. and produce
poor approximations in modeling the remaining part of the signal. This is due. in
large part. to poles not sutliciently close to the unit circle. Tterative pretfiltering.
on the other hand. produces a model which is close to the real sequence along the

complete segment.
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I1I. ITERATIVE ALGORITHM IN THE
SIGNAL DOMAIN

A. MULTIDIMENSIONAL OPTIMIZATION BY GRADI-
ENT METHODS

A multidimensional function f(ry.23.---.2,) that is continuous and differen-
tiable can be minimized using one of several very powerful hillclimbing techniques
known as gradient methods [Ref. 10. p. 34]. Some of those methods are derived on
the basis of a quadratic model that can be obtained from a truncated Taylor series
expansion of f(x). Let x'*) denote the value of x at the &% iteration. Then for any

point x = x'¥) 4+ §: when é is small. the function can be approximated by
! . )’ 1 .
f(x¥) 1+ 6) m qW(5) = f¥ + g5 4 =67 G s (3.1)

where g and G represent the vector of first derivatives and the matrix of second
derivatives of the function f(x) respectively and they should be available at every
point. In Newton's method the iterate x**1) is taken to be x'¥) + 61 where the
correction ¥ minimizes ¢'*)(6). This method is only well defined when the matrix
of second derivatives G is positive definite. in which case the &*® iteration of Newton's
method is given by the following procedure [Ref. 11, pp 44-16]:

1. solve GWs = —g®t) for § =6

2. set xF+1 = x(B) o g(k),

(3.2)

The fact that G'*) may not be positive definite when x*) is far from the solution.
and that even when G is positive definite convergence may not occur. makes this

method undesirable as a general formulation of a minimization algorithm. However, a
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number of variations to the basic method have been proposed that are more suitable
for a general class of problems. One of these methods is Newton's method with line
search [Ref. 11. pp. 17-19] in which the Newton algorithm is used to generate a
direction of scarch

s = — G g® (3.3)

which can later be used in a line search algorithm to actually calculate the correction
6. In the cases when G* is not positive definite. the linear search can be made
along +s'®) choosing the correct sign to ensure a descent direction. However, some
difficulties that arise here (like very high numerical costs and failure of convergence
for some special cases) make this an undesirable approach for our algorithm.

As stated before, Newton's method is defined only when the matrix G*) is
positive definite, and this matrix is positive definite only when the error § is “small™:
or better stated, the method is defined only in some neighborhood 2% of x(*) in
which ¢(¥)(§) agrees with f(x*) + 6) in some sense. In such cases, it is correct to
choose x¥+1) = x%) 4 §%) with the correction §'*) minimizing ¢'*)(6) for all x¥) + ¢
in %), This method is referred to as the restricted step method because the step is
restricted by the region of validity of the Taylor series. [Ref. 11]
kth

The region of definition for the iteration can be expressed as

Q® = {x: fx - x| <h®} (3.4)

where || - || denotes the norm of the vector. In this case. the optimization problem
can be stated as:

minimize g ¢"®)(8) subject to ||6]] < h. (3.5)

As mentioned before, the least squares norm is the one most commonly used in this
type of problems. so it is the one used in this thesis and is denoted as || - ||,. The

problem that now becomes apparent is how to select the error margin h'*) of the




neighborhood (3.4). This margin should be as large as possible hecause the iteration
step is directly related to it. Various methods have been proposed to control the
parameter h®): one of these methods attempts to insure that the Newton's scarch
direction problem (3.3) is always defined [Ref. 11, pp. 100-103}. It does so by adding

a multiple of the unit matrix I to G'*) and computing the new problem
(G +vI) 6™ = —g¥ (3.6)

where the net effect is that increases in v cause ||§||2 to decrease. and vice versa.

If we define
R A - 4 5™)
Ag®) fky — ([(k)(é(k))

(3.7)
then the ratio r'*) represents a measure of the accuracy to which ¢'*)(§*)) approxi-
mates f(x*) + %) on the k*® step, and as the accuracy increases r*) gets closer to
unity. Using (3.7), Marquardt [Ref. 12] suggests an algorithm that tries to adaptively
maintain h'¥) as large as possible while controlling the ratio #*). The it iteration
of such an algorithm is stated as:

1. given x*) and v™¥), calculate g® and G¥):

2. factor G + v if not positive definite. reset v*) = 4p1%) and repeat:

3. solve (3.6) to find §*:

1. evaluate f(x*) + 6§ and hence r(*);

5. if r%) < 0.25 set pFHD = 4 (0
else if 7¥) > 0.75 set v*+D = (¥ /2
else set p(k+1) = (k).

6. if r(A < 0 set xFt) = x(A) olse set x(k+1) = x(k) 4 (k)

Here the parameters 0.25. 0.75. 4 and 2 are arbitrary, and v > 0 is also chosen
arbitrarily [Ref. 11, pp. 102-103]. Proofs of global and second order convergence for
this algorithm are given in [Ref. 11, pp. 96-98] for the cases when the first and sec-

ond derivatives of the function f(x) exist. and the vector x*) helongs to a bounded
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n-dimensional space for all . Although this method does have some disadvantages.
it represents a good basis for the formulation of a general minimization algorithm.
Some variations of this method were considered. but it was found that for the spe-
cific application of ARM.A modeling in the time domain. these variations produced

an extremely high overhead in calculations.
B. THE ITERATIVE PRONY METHOD

Let us now return to the problem of representing a sequence r[n] as a lincar

combination of complex exponentials. Equation 2.17 can be written as
Rc=x+¢ (3.8)

where € is called the equation error. x represents the data which may or may not
be complex, c is the vector of complex coefficients, and R is the matrix of complex

roots, which can be written more specifically as

rr, + jrh rr, + jrlz "+ TRp + -erP .
R = (rR1 + Ty )2 (rr, + j"12)2 e (rrp F .jrlr' )2 (3.9)

N.—1 )AVS—I N.—1

| (r, + Jrpn) (rr, + Jrp (rrRe + JTi1p)
where rg, and rj, represent the real and imaginary components of the *! root. re-
spectively, and N 1s the number of data samples.

By defining
Q% Jie|ly = e*Te = (Re — x)T (Re — x). (3.10)

it is clear that the problem is to find the vector r = rp + jr; of P complex roots that
minimizes the function Q(r).

The first and second derivatives of Q with respect to r are represented by the




vector g and matrix G.which are defined by

SR
arp
.';Ql
,'-IrRl
,lQ
Jrp .
g=| "% (3.11)
.’7r1
.JL
.)r,-)
Q
T,
and
r 32 Q 32 Q 52 Q 32 Q 92 Q 2 Q -
drp, Jre, IR, 9T R, JTR, UTRp F)ral)dnl "'rRaﬁnz drp OTip
320 32Q 520 320 32Q . 1 Q
Uranrnl f"rn,_)drnz HTRQ()TRP HTR,ZJT]I r?TRQUr[2 ""rRQUT[P
52Q 32Q A2Q 920 G20 L 32Q
G = GTRPGTRI «'_')TRPUTRz arﬂparﬂp Irgr (31‘[] TR ()T]2 aTRPBTIP
= 529 29 - .. __#Q a9 #2Q . _irg
31‘[1 37‘Rl 31‘11 i’]rR,l 3r1l 87‘RP v'jT[l 87‘[1 31'1]251'1,2 87'11 a"lp
929 29 .. _29 520 ?Q " . _20°
01‘[281'31 3T128TR2 87‘128er 31‘1,231‘[1 31‘1251‘12 37‘120TIP
520 g .. ¢ 220 2o . _2Q
| Or1,0rR, IrrpdTR, dripdTRE Irpporn drrpory, oriorp |

(3.12)

In order to provide ‘or a more compact notation. define the gradient operator with

respect to the complex vector r as the vector of partial derivatives

r o h
f‘)rn
1

7
or Ry

%]
()rRP

; (3.13)

— !3




consequently. (3.11) can be expressed as

5[ T
g=\rC=| ¢ '
r; <
Equation 3.12 can also be written as
r 9 Q) D) 1Q 1Q QY Q I
R, IrR, TR, drrp o v T Iy
Y Q iQ T Q) 1Q Q) ]
rR, TRy TR, Irrp T o, iy |
o [ JiQ S iQ T AQ Q
"-:'er L '”R, T, TR arpy Sry, rip
3 9 4O Q0 30 F3O a0
+ —— e -4—‘ —A - = .« .. - —
'_—'«’7'11 TR, T Ry "'fRP ‘)”1 AT Arpp
5 AQ a9Q 50 A0 90 40
fir]2 ’Tnl "/TR_) ']"Rp "irll "irlg ”"[p
B 9Q AQ 30 HQ S9Q 39
| “:'Tlp drRl «er2 r)rRP .)rll v,ir[,z v)TIP

Now using a somewhat more convenient notation. (3.15) can be rewritten as

] 3@ aQ
.?B_T-;q: JOrR, 3"!,
G = ,
5 50 AQ
R aTRl aT[l
t=1...P
k=1...P

(3.16)

and it becomes clear that the matrix of second derivatives can be expressed compactly

as

G =V [(VeQ)] = Ve [ (v, @ (V5, Q" |-

(3.17)

The following subsections derive explicit expressions for the two quantities g and G.

1. Vector g of first derivatives

From (3.8) it is easy to see that

Je _ f)Rc and 86'T_ _Tf)R'T
(')T‘,' - dJr; . ()T‘,‘ B (.)T,'




where 7, represents the real or imaginary parts of the ' root. Using (3.13) and the

chain rule in (3.10) leads to

1Q ;R OR™T
( o :e‘r,() C“f’c.]‘(f—_ﬁ. (3.19)
()rli‘, (‘)I‘R' ()T‘R'

and explicit evaluation of the partial derivatives of the matrix R results in

r 0 ]
1
aQ T 2(rp, +Jrn)
orm,  © 3(re, + )" o
L (N = D) (rr, + )V

GT[0 1 20rp —jrs) 3(r, —irn) - (No= U (rg, —jri)¥ ™ Je
(3.20)
where ¢; is the i component of the vector c. If the quantity ¢; is defined as
- 0 ;
1
2(rp, +jr1,)
def ' ' Qs
&= 3(re, +irs)” i (3.21)
L (N, = 1) (rg, +jri) Y7
then
JR
= ¢, 3.22
orn c £, (3.22)
oR*T
T2 e, (3.23)
C)TR.
and (3.20) can be written compactly as
0Q '
X e Te e (3.21)
()TR'




-

At this poimnt it can be recognized that 13.21) represents the addition of two scalar
quantities where the first one is the complex conjugate of the second. so (3.21) can

be further simplified to

where Re[-] denotes the real part of the vector. Finallv. using (3.25) for i = [ --- P

in the upper partition of (3.1-1) produces

Ve Q =2 Re “ley. (3.26)

A similar procedure can be used to obtain the gradient of Q with respect

to the imaginary part of the vector r. Once more. from (3.13) and the chain rule

applied to (3.10), it follows that

JR . 9 o
PRt JE; (3.27)
JR*T v

T el —jeT (3.23)

These results can be used to generate an expression similar to that in (3.21) for the

vector of first derivatives of Q with respect to the imaginary components of r
- =T =T 9.
=X = jeTe, — jerTe (3.29)

which in turn defines the vector of partial derivatives with respect to the imaginary
components as
=T
£

Ve, Q@ =21Im Toley. (3.30)




Equations 3.26 and 3.30 can now be combined as shown in (3.11) to obtain the tinal

expression for the vector of {irst derivatives

[ K3
Re ' €

g= [ Vel J =2
vl‘]Q - = [

[in €

Ler 1)

2. Matrix G of second derivatives

(3.31)

An expression for the matrix G of second derivatives can be obtained as

follows. Substituting (3.24) and (3.29) into (3.16) vields

&)TR

([eTereTe] Jlete el )

= (e Te+eTe] JleTe -] )

G =

'9”11: .')rRk ) fjirRk JrRk

r")T[k v')rlk t v"irlk 'A‘T]k B

r or
] oT T ; . T «T: o7
£.T$-+C‘T&E;'+£ F&C+-~’£' E] _/ [6 I". ’E; +C F}R ’£ .

k

. "
«T 9 T oR*T «T / . T IR

eT—£L+CT2-I-{——-£l+£I)—RC+)£lF} j[er"&‘«}-clinlf—‘
k k

(3.32)
‘] 'R [16'7‘
«T 5R agt!
&5 ¢~ e ]
(3.33)




From the definition of € in (3.21) it is seen that
_ 0 ;
0
2
6(rp, +Jr1,)
e . de 12(rp, +rr1,)
‘(61 R tef ( R T 1 (3.31)
drg, :

Y = DN =) (g, £, )‘\',—:s |

e ifi=k

i

0. otherwise.
In the same way it can be shown that
3 . X 2
(_)TR = Sikr (3.(3-'))
k
¢ : .
Brr = JSi (3.36)
k
d¢;" . «a
G = —jsit. (3.37)

These last four expressions together with (3.22), (3.23),(3.27), and (3.28) can now be

substituted in (3.33) to obtain
leTsw+ el +eTen+sile] JleTsu v 676 —eiTen - sile]

G =
JleTsw—eiTe, + e e, —sile] = [eTsu — e, — €Te, +s37e]

(3.338)

Finally notice again that the clements of the matrix G are formed by addi-

tions and subtractions of complex scalars with their respective complex conjugates:




thus the final expression for G is given by

2 Re [&fr{ k.j +2 Re [sfklr\ 2 Im [&f'l‘fk] —21lm [sl',\,“e}
G =

=20 [g;7e,] + 2 Im [siTel 2 Re e "e,] = 2 Re[sif e]
i=1...P. j=1...P (3.39)
where it should be remembered that s;; = O for all / # 4.
3. Algorithm implementation

An iterative method for ARMA modeling in the time domain was imple-
mented using the results of the last two subsections in conjunction with the algo-
rithm presented in section A of this chapter. We call this method the iterative Prony
method.

The algorithm uses the signal domain form of Prony’s method to calculate
an initial model for the given sequence. From there it uses the calculated model
to compute the error e. the vector of first derivatives g, and the matrix of second
derivatives G and iterates until specific conditions are met. Figure 3.1 is an example
of how the algorithm changes the position of the poles and zeros of the initial model
in order to minimize the error. This figure represents the poles and zeros of a transfer
function of order (4.3)—4 poles 3 zeros—that was overmodeled using a (6.5) order
model. It is clear from the figure that the tendency in this case is to have a pole-zero
cancellation (see second and third quadrants) of two poles and two zeros as expected.

Some features were added to the basic algorithm in order to deal with special
modeling cases. Specifically, if the initial model has some roots on the real axis. then
because of the way the algorithm iterates. those roots never move away from the real
axis. A modification was therefore introduced to deliberately displace those roots

from the real axis and proceed with the iterations. If the tendency of the roots is
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Figure 3.1: Displacement of the poles and zeros of an iterative Prony’s model

“to go back” to the real axis. then they are returned to their initial position, and the
iterations continue. Otherwise the roots may continue to spread apart and move as
a complex pair. Figure 3.2 is an example of the displacement of the poles and zeros
of an order (4,3) model. In this case the modeled signal actually has two poles on
the real axis, and the initial model correctly placed two of the poles in the real axis.
Those poles are displaced from the real axis by the algorithm. but then after some
iterations it is clear that the poles are tending to return to the real axis. At this point
the poles are forced back to the real axis by setting their imaginary parts to zero
and the iterations continue until convergence is obtained. The opposite situation is
shown in Figure 3.3. In this case the initial model also has two poles located on the
real axis, but contrary to the case presented above, the roots. after being displaced

from the real axis, continue to move away from the axis until thev reach their final

position in the first and fourth quadrants closer to the unit circle.
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IV. PERFORMANCE OF THE ALGORITHM
AND MODELING RESULTS

A. TEST DATA USED IN THIS THESIS

Two types of signals were used in this thesis to test the performance of the
algorithm. The ftirst type. which will be called simulated test data, consists of five
sequences (101 to t05) each one hundred points long that were produced as the
impulse response of a known rational svstem. Noise to produce an SNR in the range
of 10 to 15 dB was added to the original sequences. and the resulting sequences were
designated as t01_n to t05_n. The original signals are described in Table 1.1 by their
transfer functions and the location of their poles and zeros.

The second group of test signals consists of recorded acoustic data. Two of these
signals were recorded and sampled in the laboratory. One of them is the sequence
wren(1 already mentioned in Chapter II: the other one was obtained from human
speech. in particular. the signal vowel_a corresponds to 100 samples of the spanish
vowel a. The remaining three signals from the group of acoustic data were recorded
at sea by a submarine platform: they correspond to sounds produced by marine life

and ice cracking. The description of the acoustic signals i1s presented in Table 1.2.
B. PRESENTATION OF RESULTS

All simulated test signals were modeled twice with the iterative Prony method.
In the first test the exact number of poles and zeros of the original model was used:
in the second test all signals were modeled using two more poles and zeros than the
original model. This last test is considered closer to a real life situation where the

exact order of the signal to be modeled is unknown.




FABLE L1 DESCRIPTION OF SIMULATED TEST DATA

NAME TRANSFER FUNCTION POLLES ZEROS
—0.77:" -1 s T ——
101 Hizy = [_L;.)ii”:“_;ﬂmm?_z 0.9513 £ = 0.6236 0: 0.770
102 ) iz = gt hns 0 1 09422 £ £ 0.6200 0: 0.1636
0.3937 £ £ 0.6385 1.3069: >
W03 || H(2) = gl 1 0.9512 £ + 1.3346 0: 0.9521
0.9514 £ £ 2.3041 —0.9521:
T~ — OR8]z 127974087127 -1 . - .
104 Hiz) = l—U,t’:’x(t)i:)‘"I-H)A(H:J:“‘—l).T(J‘;:”}'ﬁ—U.TH:"‘ 0.9513 £ £ 0.2097 0: 2
0.9049 7 £ 2.0943 | 0.9123 £ £ 0.8068
105 H(z) = s 0.8441: 0.9358 0: 0.750
TABLE 4.2: DESCRIPTION OF ACOUSTIC TEST DATA
SIGNAL | DESCRIPTION
wren(1 Transient sound corresponding to a wrench being struck
vowel_a Spanish vowel «a

bio2133a

Sperm whale

bio_23%85a

Porpoise whistle

hio_s0a

fce cracking
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To mathematically produce a meaningful measure of the performance of a mod-
eling algorithm can be quite difficult since various norms can be deceiving when
comparing errors of signals with large differences in magnitude. Two different ap-
proaches to measure the performance of the algorithms were therefore used in this
thesis. The first is quantitative and involves computing the squared-norm of the error
hetween the model and the actual signal and dividing it by the total energy (norm)
of the signal. The second approach is to overlay in a plot the model and the original
signal in order to provide a visual comparison of the results. This is less quantitative

but frequently more revealing of errors in the modeling process.
1. Simulated test data

The first data sets modeled were the simulated test data sets. Figure 4.1(a)
1s a comparison of the normalized errors that result when the sequence t0l_n is
modeled with 2 poles and 1 zero using both iterative prefiltering and iterative Prony
methods. Figure 4.1(b) and (c) show 100 points of the sequence t01_n and the
two order (2,1) models. At this point there is no noticeable difference between the
iterative prefiltering and the iterative Prony models. Figure 4.2(a) again shows a
comparison of the normalized errors between an iterative prefiltering model and an
iterative Prony model of t01_n for the case when the signal t01_n was overmodeled
using models of order (4,3). Although the difference between the two modeled signals
in this case is not large, notice that the error for the iterative prefiltering method
initially increases before decreasing while the error for the iterative Prony method
decreases monotonically. This is the first example of a pattern that repeats in all but
one of the simulated test signals that were modeled. Figures 1.3 through 4.10 give
similar comparisons for the remaining simulated signals. The pattern. which can be
seen in Figures 4.1 to 4.10. is that when the signals are modeled with a number of poles

and zeros different from that of the actual order of the signal (always overmodeling
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Figure 4.1: Signal ¢t01_n and its 2 poles-1 zero models. (a) Normalized squared-
norm of the error between the models and the actual signal. (b) Signal 10/-n and
the iterative prefiltering model. (c¢) Signal {0/_n and the iterative Prony model.

30




magnitude

magnitude

102 ~solid = Iterative Prony method ) o
- dashed = Iterative prefiltering method
103 _ ____ Iteration number _
0 1 2 3 4 5 6 7 3 9
(a)
2 - —
solid =signal t01_n
. dashed = iterative prefiltering model
.
OL ; “‘ /' \\\ /K\\\\ ) '“‘\\\./ TN e T e S ——— e —
\ // \\4, S
\ /, ~/
e | n
0 10 20 30 40 50 60 70 80 90 100
(b)
2
solid =signal t01_n
{
1 ‘r dashed = iterative Prony model )
B \\
. ‘\ / \\ ,’\‘ S~
OF% 1 v N N T e e e
’f \\// N
. Yo/
-1 . n
0 10 20 30 40 50 60 70 80 90 100
(c)

Figure 4.2: Signal t0/_n and its 4 poles-3 zeros models. (a) Normalized squared-
norm of the error between the models and the actual signal. (b) Signal t01_n and
the iterative prefiltering model. (c) Signal t01_n and the iterative Prony model.
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Figure 4.3: Signal {02_.n and its 4 poles-3 zeros models. (a) Normalized squared-
norm of the error between the models and the actual signal. (b) Signal t02.n and
the iterative prefiltering model. (¢) Signal {02.n and the iterative Prony model.
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Figure 1.4: Signal t02_n and its 6 poles-5 zeros models. (a) Normalized squared-
norm of the error between the models and the actual signal. (b) Signal t02.n and
the iterative prefiltering model. (c¢) Signal t02-n and the iterative Prony model.
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Figure 4.5: Signal t03-n and its 4 poles-3 zeros models. (a) Normalized squared-
norm of the error between the models and the actual signal. (b) Signal 0.3-n and
the iterative prefiltering model. (c) Signal t03-n and the iterative Prony model.
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Figure 4.6: Signal t03_n and its 6 poles-5 zeros models. (a) Normalized squared-
norm of the error between the models and the actual signal. (b) Signal 03_n and
the iterative prefiltering model. (¢) Signal t03_n and the iterative Pronv model.
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Figure 4.7: Signal t04-n and its 4 poles-3 zeros models. (a) Normalized squared-
norm of the error between the models and the actual signal. (b) Signal /04_n and
the iterative prefiltering model. (c) Signal t0/_n and the iterative Prony model.
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Figure 4.8: Signal t04.n and its 6 poles-5 zeros models. (a) Normalized squared-
norm of the error between the models and the actual signal. (b) Signal (0/_n and
the iterative prefiltering model. (¢) Signal t0/_n and the iterative Prony model.
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Figure 4.9: Signal t05_n and its 2 poles-1 zero models. (a) Normalized squared-
norm of the error between the models and the actual signal. (b) Signal ¢05.n and
the iterative prefiltering model. (c) Signal t05.n and the iterative Prony model.
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Figure 4.10: Signal t05_n and its 4 poles-3 zeros models. (a) Normalized squared-
norm of the error between the models and the actual signal. (b) Signal 05_n and
the iterative prefiltering model. (c) Signal t05.n and the iterative Prony model.
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in this case). the behavior of the iterative prefiltering method tends to degrade ii.e..
it takes longer for the algorithm to reach convergence) while the behavior of the
iterative Prony method remains the same or even improves as in the case of 105
shown in Figures 4.9(a) and 1.10(a). Parts (h) and (¢) of Figures 1.1 through .10
show the original signals and their respective models overlaid. It can be seen that
the models arrived at by both methods follow the original signals very closely in all
cases. Table 4.3 lists the location of the poles and zeros of the systems used to model
all the simulated noisy signals. These systems were obtained using both the iterative
prefiltering and the iterative Prony methods. The poles and zeros shown in Table 4.3
can be compared to the poles and zeros of the original simulated signals presented in
Table 4.1. It is clear that the location of the poles and zeros of the modeled signals
should not be exactly the same as those of the original signals because some noise (in
the order of 10 to 15 dB SNR) was intentionally added before the modeling process.
However, Tables 4.1 and 4.3 show a close relation between the location of the poles
and zeros of the original sequences and the position of the poles and zeros of the

modeled signals.
2. Acoustic test data

As mentioned in the last section the acoustic test data represents sounds
recorded both underwater and in a laboratory environment. In some cases shorter
segments were selected for modeling due to the complexity of these signals. Once
again the iterative prefiltering algorithm was used, and its results were compared to
the results obtained using the iterative Prony method.

Before presentation of results. it is important to explain how the model
produced by the iterative prefiltering method was selected. For all the cases. the
same number of iterations was used both for the iterative Prony and for the iterative

prefiltering methods. In order to obtain the best possible results from the iterative
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TABLE 1.3: POLE-ZERO LOCATION OF THE SYSTEMS USED TO MODEL
THE SIMULATED NOISY TEST DATA
SIGNAL ITERATIVE ITERATIVE
NAME & PRONY PREFILTERING
(ORDER) || POLES ZEROS POLLS ZEROS
t0ln 0.9511 £ £ 0.6291 | 0: 0.7612 0.9507 £ =0.6290 | 0: 0.7619
(2.1)
t0l_n 0.9510 £ £ 0.6290 | 0.7636 0.9506 £ £0.6289 | 0.7630
(4.3) 0.9217 £ £3.1397 | 0.9476: 0.9151 9867 £ £ 2.0944 | 0.9356 £ = 2.0830
t02_n 0.9545 £ £0.6238 | 13.2102 0.9250 £ £ 0.6313 | 6.31483
(+.3) 0.8455 £ £ 0.6743 { 2.1568: 0.1799 0.9142 £ £0.6238 | 1.6619: 0.4650
t02_n 0.9541 £ £0.6228 | 17.1527 0.9301 £ £ 0.6335 | 6.5260
(6,5) 0.8505 £ £0.6797 | 2.1237: 0.0952 0.9068 £ +0.6173 | 1.8203: 0.5542
0.9896 £ £+ 2.7699 | 0.8760 £ £ 2.7876 | 0.9221 £ £+ 2.4366 | 0.9800 £ £ 2.3896
t03_n 0.9510 £ £+ 1.8850 | 22.9950 0.9499 / £ 1.8851 | 12.2168
(4,3) 0.9505 £ £2.3029 | 1.0511: 0.9365 0.9514 / £ 2.3030 | 0.9680: 0.3020
t03n 0.9509 £ £ 1.8851 | 21.1093 0.9492 £ +1.8854 | 7.5747
(6.5) 0.9506 £ £ 2.3029 | 0.9340: 0.6882 0.9515 / £ 2.3028 | 0.9566: 0.6099
0.9356 £ +£0.2779 [ 1.1445 £ £ 0.3507 | 0.9796 £ £+ 1.5986 | 0.9870 £ £ 1.6035
t04_n 0.9022 £ £2.0981 | 22.9853 0.90438 £ £ 2.0956 | 2362.7
(4.3) 0.9515 £ £ 0.2097 | 0.9494 /£ £ 0.8212 | 0.9516 £ £ 0.2090 | 0.9000 £ £ 0.8090
t04_n 0.9040 £ £ 2.0966 | 17.5349 0.9053 £ £ 2.0933 | 57.6799
(6.5) 0.9517 £ £0.2094 | 0.9104 /£ £+ 0.8333 | 0.9518 £ £ 0.2093 | 0.9436 £ = 0.8189
0.7237: 0.7221 0.7099 £ £ 3.1147 | 0.9542: 0.8105 0.9461: 0.7303
t05_n 0.9416: 0.7840 0.6693 0.9363: 0.8325 0.7236
(2.1)
t05n 0.9366: 0.3345 0.7330 0.9368: 0.8231 0.7019
(4.3) 0.9571 £ £2.8523 | 0.95T1 £ £ 2.8436 | 0.8839 £ £+ 2.7995 | 0.8998 £ £ 2.7977
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Figure 4.11: Signal rowel_a being modeled by iterative prefiltering using a (10.9)
order system. (a) Normalized squared-norm of the error between the model and the
actual signal. (b) Signal rowel_a and the iterative prefiltering model selected f{rom
the 20 iteration. (c) Signal rowela and the iterative prefiltering model selected

from the 17" iteration.
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high enough order to properly model the original signal. once such a model has been
selected. increments or small variations to its order do not produce degradations on
the performance of the algorithm. On the contrary. it was found that in some cases
the performance of the iterative prefiltering algorithm can be significantly reduced
when the order of the model is increased slightlv. It can also be scen that the itera-
tive Prony algorithm tends to provide a closer match to the data than the iterative
prefiltering method. and in most of the cases the rate of convergence of the iterative
Prony method was higher than that of iterative prefiltering. Another important point
that can be extracted from the results presented in Figures 1.11 to 4.23 is that while
convergence with neither algorithm is guaranteed. we obtained convergence with the
iterative Prony method in all cases for these acoustic signals. The same was not
true for iterative prefiltering. In most of the cases the error for the iterative Prony
method begins to decrease starting at the first iteration. and although the change is
not monotonic in all cases. the error after a few iterations is consistently lower than

the initial error.
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Figure 1.14: Signal wren0/ and its 7 poles-6 zeros models. (a) Normalized squared-
norm of the error between the models and the actual signal. () Signal wren0! and
the iterative prefiltering model. (c) Signal wren0 and the iterative Prouy model.
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Figure 4.15: Signal wren0! and its 12 poles-11 zeros models. (a) Normalized
squared-norm of the error between the models and the actual signal. (b) Signal
wren(1 and the iterative prefiltering model. (c) Signal wren0! and the iterative
Prony model.
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Figure 1.16: Signal rowel_.a and its 10 poles-9 zeros models. (a) Normalized
squared-norm of the error between the models and the actual signal. (b) Signal
vowel_a and the iterative prefiltering model. (c) Signal rowela and the iterative
Prony model.
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Figure 4.17: Signal rowel.a and its 14 poles-13 zeros models. (a) Normalized
squared-norm of the error between the models and the actual signal. (b) Signal
vowel_a and the iterative prefiltering model. (c¢) Signal vowela and the iterative
Prony model.
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Figure 4.18: Signal bio_2/33a and its 8 poles-7 zeros models. (a) Normalized
squared-norm of the error between the models and the actual signal. (b) Signal
bio_2133a and the iterative prefiltering model. (c) Signal bi0_2173a and the iterative
Prony model.
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Figure 4.19: Signal bio_2133a and its 12 poles-11 zeros models. (a) Normalized
squared-norm of the error between the models and the actual signal. (b) Signal
bio_2133a and the iterative prefiltering model. (c) Signal bio_2133a and the iterative
Prony model.
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Figure 4.20: Signal bio_.2385a and its 8 poles-7 zeros models.
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bi0_2385a and the iterative prefiltering model. (¢) Signal bio_2385a and the iterative

Prony model.
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Figure 4.21: Signal bio_2385a and its 12 poles-11 zeros models. (a) Normalized
squared-norm of the error between the models and the actual signal. (b) Signal

bio.2385a and the iterative prefiltering model. (¢) Signal bio_2385a and the iterative
Prony model.
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Figure 1.22: Signal bio_xfla and its 8 poles-7 zeros models. {a) Normalized squared-

norm of the error hetween the models and the actual signal. (b) Signal bio_s0a and
the iterative prefiltering model. (¢) Signal bio_&0a and the iterative Pronyv model.
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Figure 4.23: Signal bio_80a and its 12 poles-11 zeros models.

(a) Normalized

squared-norm of the error between the models and the actual signal. (b) Signal

bio_80a and the iterative prefiltering model. (c) Signal bio_80a and the iterative
Prony model.
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V. CONCLUSIONS

A. DISCUSSION OF RESULTS

In this thesis. a new method for modeling signals in the time domain is developed
and applied to model both recorded acoustic data and simulated signals produced
as the impulse response of a known svstem. We call this method the iterative Prony
method. In most of the simulated test data sets the models provided by the iterative
Prony method are sufficiently close to the original signals: in most cases. it is diffi-
cult to distinguish between the signal and the model. When modeling the acoustic
data distortion becomes apparent in some of the models. which may be due to the
complexity of the structure of the signals. However, this distortion is no worse than
for any of the best algorithms that have been used io mnodel this data previously.

The new algorithm was compared very specifically to the iterative prefiltering
algorithm [Ref. 7. 8] which has been used in modeling a variety of acoustic data
[Ref. 3. 9]. The rate of convergence of the iterative Prony method was in most of the
cases comparable or superior to that of the iterative prefiltering algorithm. Thus.
while iterative prefiltering sometimes has convergence problems. the new algorithm
is much more dependable in that respect. The price to pay for this improvement is
in the number of computations. While the number of floating point operations per

iteration in the iterative prefiltering method is approximately
64P +Q — 1) +8N,(P + Q) + 10(L + Q).N, + 12N,
iterative Prony requires about

672P% + (24N, + 102) P? + (60N, + 46)P + 198,

ot
o0




floating point operations at cach iteration. For example for a complex data set of
length 100 (.\V; = 100) and P = @ = N we have approximately 152,100 tloating
point operations per iteration using iterative prefiltering versus 572,360 using iter-
ative Pronv. If we increase the order of the model to 2 = () = 16. then we have
approximately 2.787.821 operations per iteration in the iterative prefiltering algo-

rithm versus 3.509,560 in the iterative Prony method.
B. RECOMMENDATIONS FOR FUTURE WORK

The iterative prefiltering algorithm has been the main tool in the modeling
efforts for sonar data modeling [Ref. 9. 13]. The new iterative Prony algorithm is
now at a stage where it can be substituted for the iterative prefiltering algorithm and
tested in operational use. To do so needs some further programming to make the
segmentation of the data automatic and to make the entire modeling procedure more
of a “turn crank” operation. These should be some of the very next steps. In addition.
the practical implications of the increased computation needs to be addressed. and
if possible new methods need to be developed to help reduce computations.

In a larger sense the work reported in this thesis can be used as a base for
possible applications of the iterative Prony method in the problems of filter design.
speech processing, and spectral estimation. The expressions for the vector of first
derivatives g and the matrix of second derivatives G of the error derived in Chapter
[1I can be used along with different minimization methods to provide for other new

modeling methods that may adapt better to specific modeling problems.
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